24 research outputs found

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operaci贸n y la gesti贸n de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desaf铆os cr铆ticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilizaci贸n de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes m贸viles (MNO). Esto requiere t茅cnicas avanzadas de gesti贸n de redes que deben desarrollarse en funci贸n de las caracter铆sticas especiales de estas redes y las demandas de tr谩fico. Por lo tanto, es necesario proporcionar soluciones que permitan la creaci贸n de particiones de red aisladas l贸gicamente sobre la infraestructura de red f铆sica compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualizaci贸n de la RAN destinadas a abordar estos desaf铆os. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red f铆sica, en un escenario LTE-A de m煤ltiples niveles que es propiedad de un solo MNO. Proponemos una soluci贸n de virtualizaci贸n a nivel de estaci贸n base (BS), donde los m贸dulos de banda base de BSs distribuidas, interconectadas a trav茅s de la interfaz l贸gica X2, cooperan para reasignar los recursos radio en funci贸n de las necesidades de tr谩fico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparaci贸n con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales m贸viles (MVNO), al integrar el capacity broker en la arquitectura de administraci贸n de red 3GPP con un conjunto m铆inimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en ingl茅s on-demand) a varios MVNOs. Adem谩s, para aprovechar al m谩ximo las capacidades del capacity broker, proponemos un algoritmo para la asignaci贸n de recursos bajo demanda, considerando dos tipos de tr谩fico con distintas caracter铆sticas. Nuestra propuesta alcanza 50% m谩s de solicitudes admitidas sin violaci贸n del Acuerdo de Nivel de Servicio (SLA) en comparaci贸n con otros esquemas. En la tercera parte de la tesis, estudiamos una soluci贸n para el slicing de red independiente del tipo de BS, considerando la virtualizaci贸n de BS en un escenario de m煤ltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tr谩fico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra soluci贸n logra una ganancia promedio de uso de espectro de 67% y una reducci贸n de la carga de procesamiento de la banda base de 16.6% en comparaci贸n con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desaf铆os y retos de investigaci贸n para trabajos futuros.Postprint (published version

    Scalable RAN Virtualization in Multi-Tenant LTE-A Heterogeneous Networks (Extended version)

    Full text link
    Cellular communications are evolving to facilitate the current and expected increasing needs of Quality of Service (QoS), high data rates and diversity of offered services. Towards this direction, Radio Access Network (RAN) virtualization aims at providing solutions of mapping virtual network elements onto radio resources of the existing physical network. This paper proposes the Resources nEgotiation for NEtwork Virtualization (RENEV) algorithm, suitable for application in Heterogeneous Networks (HetNets) in Long Term Evolution-Advanced (LTE-A) environments, consisting of a macro evolved NodeB (eNB) overlaid with small cells. By exploiting Radio Resource Management (RRM) principles, RENEV achieves slicing and on demand delivery of resources. Leveraging the multi-tenancy approach, radio resources are transferred in terms of physical radio Resource Blocks (RBs) among multiple heterogeneous base stations, interconnected via the X2 interface. The main target is to deal with traffic variations in geographical dimension. All signaling design considerations under the current Third Generation Partnership Project (3GPP) LTE-A architecture are also investigated. Analytical studies and simulation experiments are conducted to evaluate RENEV in terms of network's throughput as well as its additional signaling overhead. Moreover we show that RENEV can be applied independently on top of already proposed schemes for RAN virtualization to improve their performance. The results indicate that significant merits are achieved both from network's and users' perspective as well as that it is a scalable solution for different number of small cells.Comment: 40 pages (including Appendices), Accepted for publication in the IEEE Transactions on Vehicular Technolog

    A Capacity Broker Architecture and Framework for Multi-tenant support in LTE-A Networks

    Get PDF
    Resource allocation in multi-operator scenarios requires an estimate of the tenants' traffic needs. This is necessary in the scenario where a Mobile Network Operator (MNO) owns the Radio Access Network (RAN) and many Mobile Virtual Network Operators (MVNOs) act as resellers of their host network's capacity under their own brands, to their own customers. In such scenarios, the forecasted MVNO traffic is the basis for providing resources suitable with the corresponding MVNOs demand. To that end, the dynamic provision of resources among MVNOs should be performed in flexible, short-term time scales. In this paper, we effectively address this issue by integrating the capacity broker into the 3rd Generation Partnership Project (3GPP) network management architecture using the minimum set of enhancements. In addition, to fully exploit its capabilities, we propose the Multi-tenant Slicing (MuSli) of capacity algorithm, to allocate resources towards MVNOs in coarse time scales. MuSli considers the estimated capacity and the impact of the traffic type (i.e., guaranteed QoS and Best-Effort) in each MVNO, to provide better utilization of the host network's capacity. Our results highlight the gains in the number of served requests without compromising their service quality

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operaci贸n y la gesti贸n de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desaf铆os cr铆ticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilizaci贸n de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes m贸viles (MNO). Esto requiere t茅cnicas avanzadas de gesti贸n de redes que deben desarrollarse en funci贸n de las caracter铆sticas especiales de estas redes y las demandas de tr谩fico. Por lo tanto, es necesario proporcionar soluciones que permitan la creaci贸n de particiones de red aisladas l贸gicamente sobre la infraestructura de red f铆sica compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualizaci贸n de la RAN destinadas a abordar estos desaf铆os. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red f铆sica, en un escenario LTE-A de m煤ltiples niveles que es propiedad de un solo MNO. Proponemos una soluci贸n de virtualizaci贸n a nivel de estaci贸n base (BS), donde los m贸dulos de banda base de BSs distribuidas, interconectadas a trav茅s de la interfaz l贸gica X2, cooperan para reasignar los recursos radio en funci贸n de las necesidades de tr谩fico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparaci贸n con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales m贸viles (MVNO), al integrar el capacity broker en la arquitectura de administraci贸n de red 3GPP con un conjunto m铆inimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en ingl茅s on-demand) a varios MVNOs. Adem谩s, para aprovechar al m谩ximo las capacidades del capacity broker, proponemos un algoritmo para la asignaci贸n de recursos bajo demanda, considerando dos tipos de tr谩fico con distintas caracter铆sticas. Nuestra propuesta alcanza 50% m谩s de solicitudes admitidas sin violaci贸n del Acuerdo de Nivel de Servicio (SLA) en comparaci贸n con otros esquemas. En la tercera parte de la tesis, estudiamos una soluci贸n para el slicing de red independiente del tipo de BS, considerando la virtualizaci贸n de BS en un escenario de m煤ltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tr谩fico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra soluci贸n logra una ganancia promedio de uso de espectro de 67% y una reducci贸n de la carga de procesamiento de la banda base de 16.6% en comparaci贸n con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desaf铆os y retos de investigaci贸n para trabajos futuros

    Network virtualization in next generation cellular networks

    No full text
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operaci贸n y la gesti贸n de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desaf铆os cr铆ticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilizaci贸n de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes m贸viles (MNO). Esto requiere t茅cnicas avanzadas de gesti贸n de redes que deben desarrollarse en funci贸n de las caracter铆sticas especiales de estas redes y las demandas de tr谩fico. Por lo tanto, es necesario proporcionar soluciones que permitan la creaci贸n de particiones de red aisladas l贸gicamente sobre la infraestructura de red f铆sica compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualizaci贸n de la RAN destinadas a abordar estos desaf铆os. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red f铆sica, en un escenario LTE-A de m煤ltiples niveles que es propiedad de un solo MNO. Proponemos una soluci贸n de virtualizaci贸n a nivel de estaci贸n base (BS), donde los m贸dulos de banda base de BSs distribuidas, interconectadas a trav茅s de la interfaz l贸gica X2, cooperan para reasignar los recursos radio en funci贸n de las necesidades de tr谩fico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparaci贸n con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales m贸viles (MVNO), al integrar el capacity broker en la arquitectura de administraci贸n de red 3GPP con un conjunto m铆inimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en ingl茅s on-demand) a varios MVNOs. Adem谩s, para aprovechar al m谩ximo las capacidades del capacity broker, proponemos un algoritmo para la asignaci贸n de recursos bajo demanda, considerando dos tipos de tr谩fico con distintas caracter铆sticas. Nuestra propuesta alcanza 50% m谩s de solicitudes admitidas sin violaci贸n del Acuerdo de Nivel de Servicio (SLA) en comparaci贸n con otros esquemas. En la tercera parte de la tesis, estudiamos una soluci贸n para el slicing de red independiente del tipo de BS, considerando la virtualizaci贸n de BS en un escenario de m煤ltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tr谩fico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra soluci贸n logra una ganancia promedio de uso de espectro de 67% y una reducci贸n de la carga de procesamiento de la banda base de 16.6% en comparaci贸n con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desaf铆os y retos de investigaci贸n para trabajos futuros

    Scalable RAN virtualization in multitenant LTE-A heterogeneous networks

    No full text
    Cellular communications are evolving to facilitate the current and expected increasing needs of quality of service, high data rates, and diversity of offered services. Toward this direction, radio access network (RAN) virtualization aims at providing solutions of mapping virtual network elements onto radio resources of the existing physical network. This paper proposes the Resources nEgotiation for NEtwork Virtualization (RENEV) algorithm, which is suitable for application in heterogeneous networks in Long-Term Evolution Advanced (LTE-A) environments, consisting of a macro evolved Node B overlaid with small cells (SCs). By exploiting radio resource management principles, RENEV achieves slicing and on-demand delivery of resources. Leveraging the multitenancy approach, radio resources are transferred in terms of physical radio resource blocks among multiple heterogeneous base stations, which are interconnected via the X2 interface. The main target is to deal with traffic variations in geographical dimension. All signaling design considerations under the current Third-Generation Partnership Project LTE-A architecture are also investigated. Analytical studies and simulation experiments are conducted to evaluate RENEV in terms of the network's throughput and additional signaling overhead. Moreover, we show that RENEV can be applied independently on top of already proposed schemes for RAN virtualization to improve their performance. The results indicate that significant advantages are achieved both from the network's and users' perspective and that it is a scalable solution for different numbers of SCs

    A Base Station Agnostic Network Slicing Framework for 5G

    No full text
    corecore